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The studies [i, 2] made a detailed investigation of the separation of flow over an 
uneven flat surface and the associated formation of a vortex attached to the surface. The 
Lavrent'ev scheme most closely approximates the actual motion of fluid about bodies. In 
accordance with this scheme, motion of the fluid is assumed to be uniformly vortical inside 
the vortex regions, while potential flow is assumed to exist outside these regions. Classical 
examples of flows conforming to this scheme - flow over a trench and a ledge [2] - have 
been examined only by numerical methods. 

Here, we construct analytical solutions of this type of problem: flow over a projec- 
tion and a trench in accordance with the Lavrent'ev scheme. It is assumed in both cases 
that the boundary between the vortex and the potential flow is an arc of a circle (a half- 
plane for the projection). The form of the projection and the channel depend on two parame- 
ters: U(~a) -I and the angle ~ at which the arc approaches the surface (U is the velocity 
of the incoming flow, ~ is the vorticity constant, and a is half-chord which subtends the 
circle arc. Thus, the form may be arbitrary to a significant extent. The condition of 
existence of the vortex with a prescribed value of ~ is determined by the value of U(~a)-l~ 
For the projection, the absolute value of this quantity must be less than a certain critical 
value approximately equal to 0.12. For the channel, the absolute value of U(~a) -I must be 
greater than the critical value determined by a (as will be shown, this angle must not ex- 
ceed 60~ 

i. Flow Over a Projection. We will examine flow of the following form: a flow U 
which is uniform at infinity flows over a stationary vortex attached to a raised portion 
of a flat surface - a projection (Fig. i). The flow inside the vortex is assumed to be 
uniformly vortical. Also, we will assume that the line separating the regions of vortex 
and potential motion (the upper boundary of the vortex) is a half-circle. We need to find 
the conditions for selecting the parameters of the vortex at which such a flow exists. We 
also need to find the form of the surface of the projection (the lower boundary of the vor- 
tex). 

To obtain an analytical solution to the problem, we will use the method of joining 
steady uniformly vortical and potential flows that was proposed in [3]. Let the potential 
of the flow outside the vortex be known and be equal to ~(W). The velocity field of the 
flow determined by this potential is written in the form 

v=dr , W = X + i Y ,  W = X - - i Y ;  ( 1 . 1 )  
dW 

w h i l e  t h e  e x p r e s s i o n  f o r  t h e  s t r e a m l i n e s  h a s  t h e  fo rm 

* ( W )  - -  ~ ( W )  = " 2 i %  ~ ( W ) =  O(W---'-). ( 1 . 2 )  

Since the flow is steady, the boundary of the vortex coincides with one of the stream- 
lines, such as 90 The equation of the boundary is 

~(W)  - -  ~ ( W )  = - -2 i%.  ( 1 . 3 )  

A d i r e c t  c h e c k  shows t h a t  t h e  e x p r e s s i o n  f o r  t h e  v e l o c i t y  f i e l d  o f  t h e  v o r t e x  f l o w  can  
be r e p r e s e n t e d  in  t h e  f o r m  

v =  ~ y ( w - z )  + ~ ,  (1.4) 

where  ~ i s  t h e  v o r t i c i t y  c o n s t a n t ,  w h i l e  t h e  f u n c t i o n  Z i s  f ound  f r o m  t h e  e q u a t i o n  
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Fig. i 

a)(w-) _ c~(z) = - 2 ~ 0 .  ( 1 . s )  

It should be noted that the value of the function Z at the boundary of the vortex coincides 
with W, so that the velocity on the line which joins the flows is continuous. 

With the above approach, it is evident that the character of the flow depends complete- 
ly on the form of the potential ~(W). In our case, when the line separating the vortex 
from the potential flow i~ a hal~-circl~, the potential is conveniently chosen to be equal 
to the Zhukov function ~(W) = U(W + a2/W) (a is the radius of the half-circle). The stream- 
lines are determined by the relation U(W + a2/W) - U(W + a2/W) = -2i~. The boundary of 
the vortex corresponds to ~0 = 0. Here, with allowance for (1.5), we can find Z(W) = a2(W) -I. 
This means that the velocity in the vortex is 

o oa (a) V = , - - z - W - - , - ~ - - ~ - + U  t - - ~  . (1 .6 )  

The expression for the stream function which corresponds to this velocity field is written 

as 

* = -  Iwl  - ' -a~ + 7 -  ~ n - - + u Y  I i~ l~  , 

where it was taken into account that ~ = 0 at [W[ = a. The equation of the lower boundary 

of the vortex is 

4 - r  + u r  i IWl' = O. (1 .7 )  

Let us determine the conditions under which the above solution can exist. It follows 
from (1.6) that the velocity field of the vortex flow has a singularity at zero. This means 
that solution (1._6) makes physical sense only if the lower boundary of the vortex passes 
above the point W = 0. The coordinate of the point at which the boundary of the vortex 
intersects the vertical axis is found from the solution of the transcendental equation 

(Y= -- a~) (Y  --  4---~) = 2a2Y ln--r-Y~a (1 .8)  

obtained from (1.7) if we put X = 0. Equation (1.8) is convenient to study graphically. 
For a regime of flow about a projection with an attached vortex to exist, it is necessary 
that the graphs of the curves determined by the left and right sides of Eq. (1.8) have points 
of intersection in the interval (0, a). A sufficient criterion of the existence of such 

a solution is as follows: 

U e2+  1 
~a ~ 4e(e~__t) ~OA2 (e"~2,7t). (1 .9 )  

It should be noted that the left side of inequality (1.9) is always positive - this follows 
from physical considerations (see Fig. i). The quantity U(~a) -l does not figure into the 
initial hydrodynamic equations, so that the result obtained regarding the dependence of 
the condition of existence of the attached vortex on this number is highly nontrivial. The 
physical significance of inequality (1.9) is fairly simple: the characteristic velocity in 
the vortex ~a should be sufficiently large compared to the velocity of uniform flow. 

The dimensionless number U(~a) -I determines the angle at which the lower boundary 
of the vortex leaves the flat surface. For example, at the point W = a (seeFig. i), 8 = 
4U(Qa) -I . It is evident from this that while the position of the upper boundary remains unchanged, 
the angle 8 may change in relation to the flow parameters. The result obtained here is con- 
nected with the fact that the upper boundary of the vortex is normal to the surface. If 
it approaches the surface at the point W = a at an angle greater than a right angle, then, 
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Fig. 2 

as was shown in [4] (or see [2]), this angle should be equal to 0/2, i.e., the angle of 
departure of the lower boundary from the surface is unambiguously determined by the position 
of the upper boundary. This general property of the boundaries of attached vortices is 
illustrated below. 

2. Flow over a Trench. We will examine the movement of a uniform flow over a sta- 
tionary vortex which is attached to a cylindrical pit in a plane - a trench. We will assume 
that the upper boundary of the vortex is an arc of a circle and that the angle a at which 
this boundary leaves the surface (Fig. 2) is less than a right angle. We will use Eqs. 
(1.1)-(1.5) to analytically describe flow over the trench. 

The potential of the flow outside the vortex is 

)2aU~ [ (W--atU/(a-a)]-~ q'  ( ~ )  = ~ -  ~ ~ - ~ g - 4 - ~ /  ] �9 (2,l) 

This expression describes the potential motion of a uniform flow over a knoll in the form 
of a segment [i]. In the special case ~ = ~/2, the potential (2.1) is equal to the Zhukov 
function to within an unessential constant term. The velocity field of the potential flow 
is found from the expression 

(w 2 _ a2)~ -I ( \ 

[ ( W  + ~)~ - (W - ~)~1 ~ 

from which it is evident in particular that the velocity at infinity approaches the constant 
U. 

In accordance wth (1.4) and (1.5), the velocity in the vortex is 

V = ~ ~ (W - -  Z) + 4a2~2U.. (2  2 )  
[ ( w  + ~)~ - ( w  - ~)~1~ ' ' 

where the function Z is determined by the equation [(Z - a)/(Z + a)]~[(W + a)/(W - a)]~ = 
i. Of the set of solutions of this equation, we should choose a solution that ensures contin- 
uity of the velocity at the boundary where the flows are joined. It is not hard to see 
that this condition is satisfied by the following expression 

(- Z = - -  W + a i c tg  + a i c tg  ~a-~ - .  (2.3) P sin,-- ~- 

It is then evident from (2.3) that Z = W for the points lying on the circle arc and that 
the function Z has a pole at the point W = -ai cot (~/~). For the flow being examined to 
make physical sense, the lower boundary of the vortex must pass above this point. 

We write the equation of the lower boundary in the form 

2 sin~ T ~ - - = O. ( 2 . 4 )  

The curve determined by this equation is symmetrical relative to the vertical axis. Near 

8~cr~--q ~sin~6, " " ~< 2, where q and ~ are, respectively, th$ point a, for example, ~2,~--a~ k2a] 

the modulus and the phase of the perturbation of the complex coordinate W at point a. It 
follows from this equality that the lower boundary leaves the surface at point a at the 
angle 2(~ - ~), i.e., the tangent to the upper boundary at point a is the bisector of this 
angle (see Fig. 2). 
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Let us find the condition of existence of the attached vortex in the trench. To do 
this, we need to find the coordinate of the point at which the lower boundary of the vortex 
intersects the vertical axis (the point of intersection must lie above the point y0 = ia 
cot (~/B). We introduce the new variables r and ~ , given by the equality'(W -- a)/(W + 
a) = re~. On the vertical axis, r = i, and the point of intersection of the lower boundary 
with this axis W, = iacot(~,/2) is determined by the equation 

2 a~ ctg O. 
I t  is conveniently rewritten in the form 

t + ln[sin2 ~(etg-~-- ctgcc)eJ_(etg_~_ etgcr ~4~U sin2 ccetg fi_~_~2,. (2.5) 

Since we are examining the case of a vortex in a trench, the quantity Y, must lie with- 
in the range from -a cot ~ to zero. The values of ~, corresponding to this interval satisfy 
the inequality 

2 ~ < r  (2.6) 

The conditions of existence of the attached vortex are readily explained by means 
of graphing. Inside the interval of 9, , the left side of (2.5) is always negative. The 
curve of the dependence of the right side on ~, is negative on the interval from 0 to ~ - 
a (remember that U(a~) -I is negative). Having represented the path of these curves quali- 
tatively, it is not hard to reach two important conclusions: the vortex exists in the trench 
only if the arc of the upper boundary of the vortex approaches the surface at the angle a < 
~/3 (i.e., if the zero of the right side of (2.5) lies within the interval (2.6) or w - a > 
2e); with the chosen ~, IU(a~)-~I should exceed a certain criticalvalue IU(a~)~II determined 
by ~. It should be noted that in contrast to the case of flow over a projection, an attached 
vortex is formed when the velocity of the uniform flow exceeds the critical value of the 
characteristic velocity in the vortex (the opposite result is valid for flow over a projection). 

It follows from Eqs. (1.7) and (2.4) that the form of the projection and the trench 
can be arbitrary to a significant extent, depending on the values of U(~a) -I and ~ (in the 
case of the trench). In the study of problems involving flow over irregularities of a speci- 
fied form, this fact makes it possible to take the set of possible trench and projection 
profiles and choose the profile which is closest to that which is specified. It is evident 
from physical considerations (and numerical calculations) that a small amount of distortion 
of the profile may not significantly affect the character of the flow. Thus, the solutions 
obtained here can also be used for practically important problems of flow over irregularities 
of a prescribed shape involving the formation of an attached vortex. 
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